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Abstract

This paper describes the free vibration analysis of a cylindrical gas cavity axially bounded at one end by a
liquid interface and a thin elastic disc at the other end. Natural frequencies of the complete liquid/gas/
structural coupled system are calculated and compared with values obtained when simplifying assumptions
are made with respect to the boundaries between the liquid, gas and structure. The analysis includes
examination of the interaction between liquid and gas when the disc is assumed rigid. In selected cases the
natural frequencies are compared with corresponding values obtained experimentally and from a
commercial finite element code.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The influence of a liquid, or gas, interface upon the higher frequency vibration of a light flexible
structure has been a subject of growing interest, particularly due to the increased deployment of
thin-walled liquid/gas containers such as pipes and storage vessels. In the literature this work
comes under two main headings; structural/acoustic vibration interaction and structural/fluid
vibration interaction. In the former the research is confined to the interaction between a light
structure and sound pressure waves in an acoustic cavity which the structure is enclosing. The
general analysis of acoustic/structural vibration interaction problems is presented in Refs. [1,2],
where infinite series solutions for the acoustic pressure and the displacement of the structure are
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derived from a fundamental solution of the uncoupled problems, viz.: vibration of the structure in
vacuo, and acoustic resonance in a closed cavity with undeformable walls. These basic models
were extended and applied to problems involving rectangular plates backed by rectangular
cavities [3–6]. One study has been performed on the case of a circular membrane vibrating in
contact with a gas contained in both a closed and open cylindrical cavity [7]. With respect to the
case of vibro-acoustic effects involving a circular plate, Lee and Singh [8] analyzed the
characteristics of the acoustic radiation emitted from a vibrating circular plate in free space and
Gorman et al. [9] considered the case of a circular disc covering a cylindrical acoustic cavity. With
respect to structural/fluid vibration interaction in storage containers, Bauer and Chiba [10]
considered the case of a circular plate backed by a cylindrical cavity containing fluid assumed to
be viscous and incompressible and Amabili et al. considered the effect of incompressible liquid
depth and contact upon the free vibration of circular and annular plates [11,12].
In this paper an analysis of a particular problem involving gas/liquid/structural interaction is

presented. Consider the cylindrical gas cavity shown in Fig. 1 that is encapsulated by the thin
circular plate and the liquid column as shown. In this instance the liquid will be assumed to be
compressible. This system can be likened to an enclosed and partially filled vertical liquid storage
container subject to vertical base vibration excitation. Since the excitation is in the vertical
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Fig. 1. Schematic diagram of the system under investigation.
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direction only, it can reasonably be assumed that the axial stiffness of the side walls is
exceptionally high and therefore the only elastic vibration of the structure which need be
considered is the thin top plate. When confronted with such a system, the engineer often will seek
simplifying assumptions and may in this case make assumptions regarding the liquid/gas and the
gas/plate interfaces. In particular, it could well be assumed that either or both, of these interfaces
represent solid boundaries whereupon the axial velocity of the gas is zero at all points along
these boundary interfaces. In this paper, will be developed a theory upon which the natural
frequencies of the completely coupled system can be calculated and the analysis, in passing, will
also consider the special case where the rigidity of the plate is so large that it can be considered to
be a solid boundary. The results from the analysis are compared with the corresponding values
obtained from basic laboratory experiments and from the commercial finite element code
ANSYS1 version 6.1.

2. Theoretical analysis

2.1. Vibration of a cylindrical acoustic medium

Consider the systems shown in Fig. 1 comprising two fluids contained in a solid cylindrical
cavity covered by a thin elastic circular plate. For each of the two compressible fluids contained in
the cavity (i ¼ 1 and 2) the general equation which describes the perturbed velocity potential can
be written as
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where %r ¼ r=a and %xi ¼ xi=li and all symbols are listed in the appendix.
In each case, the harmonic solution can be assumed to be
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and since dQ=d%rj%r¼1 ¼ 0; for both fluids,

Qð%rÞ ¼ CJmðamq %rÞ; ð5Þ

where

k2
imq ¼ fl2i � a2mqg ð6Þ

and amq is the qth root of a satisfying J 0
mðaÞ ¼ 0:

Considering once again, from Eq. (3), with ki changing to kimq
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Hið %xiÞ ¼ Aimq cos gimq %xi þ Bimq sin gimq %xi; ð7Þ

where gimq ¼ ðli=aÞkimq:
For fluid i ¼ 1 (liquid), since dH1=d %x1j %x1¼0 ¼ 0; then

F1mq ¼ A1mq½cosðg1mq %xiÞ�Jmðamq %rÞ cosmYejot ð8Þ

and
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and for the fluid i ¼ 2 (gas),
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A2mq ¼
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cosðg1mqÞA1mq: ð15Þ
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In substituting the above in the general equation (10) for F2mq gives

F2mq ¼
l2

l1
A1mq M cos ðg1mqÞ cosðg2mq %x2Þ �

g1mq

g2mq

 !
sinðg1mqÞ sinðg2mq %x2Þ

" #

 Jmðamq %rÞ cosðmYÞejot; ð16Þ

where M ¼ r1l1=ðr2l2Þ:
At this stage, it is convenient to diversify slightly and consider the special case where the

assumption, for later comparison, is that the thin plate at %x2 ¼ 1 is treated as a solid boundary. In
this case @F2mq=@ %x2j %x2¼1 ¼ 0; giving

M tan g2mq þ
g1mq

g2mq

tan g1mq ¼ 0: ð17Þ

From Eq. (17) iteration gives the values of o contained in the equations for g1mq and g2mq which
satisfy Eq. (17). However, the gas/structural coupled system will now be analysed by considering
in the first instance the free vibration of the thin disc in vacuo.

2.2. Vibration of a thin disc in vacuo

The governing equation for the lateral vibration, w ¼ wð%r; y; tÞ of a thin disc in vacuo
is [13]
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where Do ¼ Eh2=½12ð1� n2Þ�: For a peripherally-clamped circular plate

wj%r¼1 ¼
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¼ 0 ð19Þ

and, for a given value of m; the radial mode shape of vibration is

Wmð%rÞ ¼ AmJmðxms %rÞ þ CmImðxms %rÞ; ð20Þ

where xm;s are roots ðs ¼ 1; 2;yÞ of the equation
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The natural frequencies of the disc in vacuo are
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and the modes of vibration are
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2.3. The coupled solution

From Eq. (16), for a fixed integer value m (the number of nodal diameters), the potential is

F2m ¼
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and for the forced vibrations of the disc it is possible to write

wmð%r;Y; tÞ ¼ Wmð%rÞcosðmYÞejot; ð25Þ

where

Wmð%rÞ ¼
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and W0ms are unknown constants. Now equating the velocity of the plate to the axial velocity of
the gas at the structural/gas interface:
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At this stage the orthogonality relationship [14] is also introduced:Z 1
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Therefore, multiplication of Eq. (28), which describes the impermeability condition, by ½%rJmðamq %rÞ�
and integration over the interval (0,1) gives
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Therefore,
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Substituting Wmsð%rÞ from Eq. (23) into the integrals
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Therefore, the pressure equation (34) becomes
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For the disc in vacuo,
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and pmjx2¼1 into the equation of motion describing the vibrating disc interacting with the fluid, i.e.,
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After substitutions of Wms and pm;
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Multiplying Eq. (43) by ½%rJmðamq %rÞ� and integrating over the interval ð0; 1Þ; the following equation
is obtained:
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where r ¼ r2l2=ðrdhÞ: After the integration has been performed, the following equation is
obtained:
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Expressing Eq. (46) in matrix form for fixed m and q; s ¼ 1; 2;y;N gives

a11ðoÞ a12ðoÞ? a1NðoÞ

a21ðoÞ a22ðoÞ? a2NðoÞ

^ ^ ^
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; ð47Þ

where

aqsðoÞ ¼ JmðamqÞ:Gmsq:fo2
ms � o2½1þ rK

ðoÞ
12mq�g; ð48Þ

%Wms ¼ W0msImðxmsÞ: ð49Þ

3. Experimental and ANSYS analysis

3.1. Experimental Analysis

A simple experimental arrangement of the system shown in Fig. 1 was constructed in which a
5 mm thick Perspex tube was fixed upon a shaker table. A microphone inserted into the wall of
the tube detects acoustic resonance. A thin circular disc covered the top of the perspex tube and
resonance of the disc was detected by a miniature accelerometer. This arrangement will be referred
to as the ‘‘plate top’’ case (Fig. 2a). A similar arrangement, except that a solid cap replaced the
thin disc thus modelling the condition described by Eq. (17), was tested. In this case two
microphones are used to detect acoustic resonance of the air column; one into the side of the
Perspex wall as before and the other into the Perspex solid top. This arrangement will be referred
to as the ‘‘hard-top’’ case (Fig. 2(b)).
In both cases the heights of water and air columns can be adjusted and since the excitation is

whole base vertical excitation, then only the axisymetric ðm ¼ 0Þ modes can be excited.
The radius of the liquid and cavity and the circular plate at the top, a; was 65 mm and the

thickness of the thin structural circular plate was 0:8 mm: In view of the manner in which the plate
was fastened it was assumed that the boundary conditions were predominantly clamped.

3.2. ANSYS analysis

The model was fully three dimensional and used 9000 elements (type FLUID30) for the fluids in
the cavity and 300 elements (type SHELL63) for the plate. The Perspex cylinder walls were (a)
assumed rigid, and (b) modelled by 3600 elements (type SHELL63) which were attributed values
of Young’s modulus, density and the Poisson ratio of 4:8 GPa; 1180 kg=m3 and 0.3, respectively.
In each of the cases (a) and (b), the circular plate was fully fixed to the edges of the cylinder wall.
The plate and fluid elements that are in contact are coupled for fluid–structure interaction. A
modal analysis was performed and the Lanczos unsymmetric eigensolver method [15] was used for
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the mode extraction during the solution process. The dimensions of the plate and cavity were the
same as those in the experiments.

4. Results and discussion

4.1. ‘‘Hard top’’ case

Prior to presenting results for the complete coupled liquid/gas/structure system, the natural
frequencies of the liquid/gas cavity were first considered, where the top is assumed solid, as
determined from Eq. (17). In accordance with the experimental method of excitation, the results
are confined to those associated with axisymetric modes of vibration, i.e., m ¼ 0 in Eq. (2).
Furthermore, in this case only, only the fundamental mode was considered where there are no
radial waves in the liquid or gas, i.e., s ¼ 1; rendering a01 ¼ 0 and hence Qð%rÞ ¼ 1 in Eq. (2). Now,
since q ¼ 1; then g101 ¼ ol1=c1 ¼ %g101 for the liquid and g201 ¼ ol2=c2 ¼ %g201 for the gas. In this
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(b)

Fig. 2. (a) Experiment involving liquid/gas/structural interaction (‘‘plate top’’); (b) Experiment involving liquid/gas

interaction only (‘‘hard top’’).
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special case, for q ¼ 1; these parameters are denoted as %g101 and %g201: Accordingly %g101 ¼ f12%g201;
where f12ð¼ l1=c1=l2=c2Þ is a constant which in effect describes the degree of potential coupling
between the liquid and the gas.
Therefore, Eq. (17) can now be written as

tan %g201 þ
1

N
tan f12%g201 ¼ 0; ð50Þ

where N ¼ r1c1=ðr2c2Þ:
Eq. (50) is iterated for values of %g201ð¼ ol2=c2Þ for set values of f12 and N: Figs. 3(a) and (b)

show plots of the first ð%g1201Þ and second ð%g2201Þ root, respectively, of %g201 against f12 ð0:1pf12p2Þ
for a value of N ¼ 3644:3 ðc1 ¼ 1500 m=s; r1 ¼ 1000 kg=m2; c2 ¼ 343 m=c; r2 ¼ 1:2 kg=m3).
Figs. 3(a) and (b) show the values of p and 2p; respectively, since these would be the first two roots
of %g201 if the liquid/gas interface was assumed rigid. Also included in these figures are the values of
ol2=c2 determined experimentally as described in Section 3.
Referring to Figs. 3(a) and 3(b), there would appear to be good agreement between the

computed and the experimental values. It is also interesting to note that the first root of %g201 only
reaches the value of p for values of f12 less than approximately 0.5 with the exception when
f12 ¼ 1: In this case it can immediately be seen that for f12 ¼ 1; Eq. (50) simply becomes tan

%g201 ¼ 0; i.e., %g201 ¼ p; 2p etc. Likewise for the second root of %g201 (Fig. 3(b)) the value of 2p is only
reached for values of f12 less than approximately 0.25 with the exception when f12 ¼ 1 (as before
for the first root) and, more interestingly, for f12 ¼ 0:333 (one third). Due to the very large value
of N in Eq. (50), roots such as these will indeed be generated. However, in practice it would be
very unlikely for such special roots to manifest themselves due to the absolute accuracy required
in all relative dimensions and properties to exist. Outwith these notable exceptions one can deduce
that in the case where the disc covering the top of the cavity is assumed solid, then the natural
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frequencies of the gas cavity can only be assumed to be similar to the case of a totally solid
enclosed gas cavity if the natural frequencies of the liquid column alone are approximately at least
twice and four time that of the gas cavity alone for the first and second modes, respectively. If this
is not the case then the complete liquid/gas coupled system must be considered.

4.2. ‘‘Plate-top’’ case

In this section the results produced for the case where the top of the container is the thin
circular plate will be considered. In this case a fluid/gas/structural interaction system is in effect
being examined.

4.2.1. Comparison between experimentally obtained and computed values of natural frequency
For this particular comparison, the authors deemed that the basic construction of the

experimental set-up was only suitable for comparison of the fundamental modes of vibration for
each height of liquid and gas. The main sources of error between the experimental and computed
values no doubt lie in the compliance of the actual boundary conditions with the assumed
conditions for the circular plate ½ð@w=@%rj%r¼1 ¼ wj%r¼1 ¼ 0Þ�; and the compliance of the Perspex
cylinder wall. In addition the mass of the, albeit small, accelerometer was not accounted for.
Accordingly, Table 1 lists the values of the fundamental natural frequencies obtained

experimentally, those corresponding values obtained by solving for the determinant of the first
three rows and columns of the matrix described by Eq. (47) equated to zero, and, those
corresponding values obtained from execution of the ANSYS 6.1 model for both the cases where
the cylinder wall was assumed rigid and compliant. For reference, also contained in Table 1 are:

(i) The values od1 and od2 which are the first two computed axisymetric natural frequency of the
disc in vacuo, i.e., from Eq. (22)

od1 ¼ z201
1

a2

ffiffiffiffiffiffi
Do

ra

s
and od2 ¼ z202

1

a2

ffiffiffiffiffiffi
Do

ra

s
;

where in this case for a peripherally clamped disc, z201 ¼ 10:2158 and z202 ¼ 39:771:
(ii) Values of owa1; owa2; owa3 which are the computed first, second and third natural frequencies

of the liquid/gas system only respectively, when the top is assumed rigid, i.e., the ‘‘hard-top’’
case reproduced from Section 4.1, using Eq. (50).

By listing the values described above, it will help the reader to classify the natural frequencies
computed from Eq. (47), ANSYS and experimental values for the liquid/gas/structural interaction
case. In all cases natural frequencies are expressed in units of Hertz.
From the results shown in Table 1, there would appear to be reasonably good correlation

between the values of natural frequencies computed from Eq. (47) and ANSYS, and both show
the same basic trend for decreasing values of f12: In the case of the fundamental mode only, the
value obtained experimentally is found to be always somewhat lower than the computed values.
Accordingly, the analysis by ANSYS was, as previously described, modified to include the effect
of the compliance of the Perspex side walls and the corresponding computed fundamental natural
frequencies and listed in Table 1; values contained in brackets. Consequently, it is observed that
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the values obtained experimentally always lie between those values computed for a rigid side wall
assumption and those computed for a compliant side wall assumption.
The comparison between the values of natural frequency obtained from Eq. (47) and from

ANSYS would appear to be good, particularly, for the low fractional values of f12: The same
comparison for values of f12 between 2 and 0.5, i.e., in and around a value of f12 equal to 1 shows
less strong agreement particularly for the second mode. In the view of the authors, this less
accurate agreement is mainly attributable to one important difference of the two methods. In the
analysis presented it is implied that at the interface between the liquid and gas and between the gas
and the plate, only axial displacement is compatible, i.e., the boundary is defined as affined.
However, in the ANSYS formulation these interfaces are linked by complete compatibility in all
directions. This difference in modelling of the interfaces will have a more pronounced effect at
conditions of strong interaction.
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Table 1

Values of natural frequencies computed and compared with experimentally obtained values. All values of o expressed

in Hertz

l1 l2 o o oexperimental od1 owa1

(mm) (mm) Eq. (47) (ANSYS) od2 owa2

Eq. (22) owa3

Eq. (50)

400 45 489 486(438)a 460 483 938

938 1053 2812

f12 ¼ 1:98 1876 1870 1882 3811

2812 2715

350 95 484 484(430) 440 483 1071

1071 1036 1805

f12 ¼ 0:997 1799b 1850 1882 3214

1883b 1892

300 145 482 482(426) 476 483 1182

1183 975 1251

f12 ¼ 0:473 1251 1459 1882 2365

1875 1870

200 245 480 480(425) 441 483 700

703 674 1400

f12 ¼ 0:23 1400 1322 1882 1875

1874 1830

150 295 477 477(420) 445 483 581

587 574 1163

f12 ¼ 0:11 1164 1144 1882 1744

1743 1723

100 345 467c 466(411) 434 483 497

512c 509 994

f12 ¼ 0:066 998 995 1882 1491

1492 1517

aNumbers in bracket are those for the system modelled with compliant side walls.
bCoupled od2 and owa2:
cCoupled od1 and owa1:
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4.2.2. General characteristics of liquid/gas/struction interaction system

Prior to presenting results for more general cases, an attempt shall be made to define and
describe parameters which describe degrees of coupling between the liquid gas and structure.
In Section 4.1 the parameter f12 was defined as

%g101 ¼ f12%g201 or f12 ¼
l1=c1

l2=c2
;

where %g101 and %g201 are the values of g101 and g201; respectively, for the special case where q ¼ 1:
Now, consider the first computed root from Eq. (50), i.e.,

%g1201 ¼ owa1
l2

c2
; hence owa1 ¼ %g1201

c2

l2
: ð51Þ

The first axisymetric natural frequency of the disc in vacuo, od1 can be written as

od1 ¼ z201

ffiffiffiffiffiffiffiffiffiffi
Do

rda4

s
¼ z201f %Dg1=2:

Now let the parameter f32 be defined as

od1 ¼ f32owa1:

In effect f32 is the ratio of the natural frequency of the first axisymetric mode of the disc in vacuo
to the first natural frequency of the solid bounded liquid/gas sub-system.
Now in Eq. (48) the eigenvalue o2 can be written as

o2 ¼ z4 %D

and for the disc in vacuo, as before,

o2
mn ¼ z4ms

%D:

Hence, Eq. (48) becomes

aqsðzÞ ¼ JmðamqÞGmsqfz
4 � z4ms½1þ rK

ðzÞ
12mq�g

and the values of g1mq and g2mq contained in K
ðoÞ
12mq (Eq. (33)) become

g1mq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4

z401
ðf12 f32 %g1201Þ

2 � amq f12
c1

c2

l2

a

� �2
s

and

g2mq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4

z401
ðf32 %g1201Þ

2 � amq
l2

a

� �2
s

:

Therefore, the roots of the matrix equation (40), z; will depend upon the non-dimensional
parameters of f12; f32; rð¼ r2l2=ðrdhÞÞ; Mð¼ r1l1=ðr2l2ÞÞ and ðl2=aÞ: Furthermore, if r1; r2; c1 and
c2 are specified then specification of f12 and f32 negate the need to specify r and M: Hence f12; f32
and the ratio ðl2=aÞ are the sole governing parameters of the matrix equation (40). Now consider
the general case where ðl2=aÞ ¼ 0:25; and as before r1 ¼ 1000 kg=m3; r2 ¼ 1:2 kg=m3; c1 ¼
1500 m=s and c2 ¼ 343 m=s: The first three rows and columns of matrix equation (40) for roots of
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z shall be solved for varying values of f32 (adjusting the plate thickness relative to l2) and f12
(adjusting the water depth l1 relative to l2).
From the experience of Section 4.2a, the main interest here focuses upon the first structural

dominant natural frequency and the first liquid/gas dominant natural frequency and strong
coupling occurs when these two values approach each other. Therefore, let

Rc ¼ zd1=zwa1; ð52Þ

where zd1 and zwa1 are the first structural dominated and first liquid/gas dominated related roots,
respectively, of the truncated matrix equation (47). Therefore, strong liquid/gas/structural
coupling will be indicated when Rc approaches unity.
Figs. 4(a)–(d) are plots of Rc against f12 for four values of f32 between 0.4 and 1.6. From these

figures it can be seen that the value of Rc is generally in agreement with the value of f32: The only
instances where disagreement occurs is around f12 ¼ 1 due to the strong coupling between the
liquid and gas columns.
Now consider the case where the first natural frequency of the disc in vacuo is tuned relative to

the first natural frequency of the gas column alone, i.e., both the disc and liquid interfaces are
assumed as rigid boundaries. In this case replacing %g1201 by p in Eq. (51) gives

owa1 ¼
pc2

l2

and

od1 ¼ z201

ffiffiffiffiffiffiffiffiffiffi
Do

rda4

s
¼ F32owa1:

Figs. 5(a)–(d) show plots of Rc against values of f12 ranging between 0.1 and 2 for values of F32

equal to 0.4, 0.8, 1.2 and 1.6 as before. Comparing Figs. 5(a)–(d) with the corresponding values in
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Fig. 4. Plot of Rc versus f12 when disc is relatively tuned to liquid/gas acoustic cavity.
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Figs. 4(a)–(d), one sees that Rc corresponds approximately to Rc for lower values of f12: However,
Rc then increases linearly with increasing values of f12: This is of particular importance in the cases
where F32 is less that unity, whence in such cases the value of Rc can pass through the value of
unity, indicating a condition of strong liquid/gas/structural coupling, a situation that is generally
intended to be avoided.

5. Conclusions

An analysis describing the free vibration of a liquid/gas/structural interacting system has
been presented. Results from the natural frequency for the coupled system have been
produced which compare favourably with values computed from a commercial finite
element code and experimentally obtained values. The results for the completely coupled
system were also compared with values obtained when simplifying assumptions were made
about the liquid/gas and gas/structure interfaces. It was concluded that only under very
specific circumstances could these simplifying assumptions render values of the natural
frequency that resembled those corresponding values from a complete analysis of the coupled
system.
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Fig. 5. Plot of Rc versus f12 when disc is relatively tuned to gas only acoustic cavity.
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Appendix. Nomenclature

a peripheral radius of disc/acoustic cavity
c1; c2 speed of acoustic wave propagation in liquid and gas column, respectively
E Young’s modulus
f12; f32;F32 coupling factors
Jm; Im;Ym Bessel functions, order m

l1; l2 depth of liquid and gas cavity, respectively
m number of circular waves
q number of radial waves in acoustic medium
r radial co-ordinate
s number of radial waves on disc
w lateral vibratory deflection of disc
x1;x2 axial distance from base of liquid and gas cavity, respectively
Y circumferential co-ordinate
F velocity potential functions
n Poisson’s ratio
r1;r2 density of liquid and gas, respectively
rd disc density
o natural frequency
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